
Thoughts on the Role of Formalisms in Studying Software Evolution
International Special Session on Formal Foundations of Software Evolution, co-located with CSMR 2001

13 March 2001, Lisbon

Meir M Lehman Juan F Ramil Goel Kahen
Department of Computing

Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ

tel +44 20 7594 8216; fax +44 20 7594 8215
{mml,ramil,gk}@doc.ic.ac.uk

Summary
This paper presents a system dynamics model of a long-term software evolution process as an example of

process behavioural formalism and shows how the model permits assessment of the impact of various policies
on evolutionary attributes. The model provides a context and framework within which at least three crucial
software management tasks, resource allocation, release planning, and process performance monitoring can be
tackled. It is part of and exemplifies the methods for software process modelling being developed and applied
in the FEAST, Feedback, Evolution And Software Technology, projects.

1 Introduction

The term software evolution relates to the activity
and phenomenon of software change [leh85]. It
includes two aspects that reflect, respectively, the
complementary concerns of the how and the
what/why [leh00b] of software evolution. Interest in
the former is concerned with methods, tools and
techniques to change functional, performance and
other characteristics of the software in a controlled,
reliable, fast and cost effective manner. This is the
more widespread view and is exemplified by the
contributions to a series of meetings on Principles of
Software Evolution [ispse98,00]. Interest in the
what/why, on the other hand, focuses on
understanding the software evolution phenomenon,
its underlying causes and drivers, common patterns
of evolutionary behaviour, and the characteristics of
that behaviour. This line of investigation, the focus of
the FEAST (Feedback, Evolution And Software
Technology) studies in the Department of Computing
at Imperial College [feast] and their antecedents, has
also been pursued by a small number of other groups
world-wide [e.g. kem99,coo00,gdf00,raj00].

Both views, the how and the what/why, must be
pursued if mastery of the software evolution
phenomenon is to be achieved in a world increasing
dependent on computers and software. The following
are examples of the type of questions whose answer
is pursued under the latter view:
• why does software evolution occur?
• why is it inevitable?
• what are key attributes of the evolution process?
• what is their impact on the software process and

its products?
• what are the practical implications of the above

on the planning control and management of
software system evolution?

One of the present authors (mml) has been actively
involved in studies of software evolution for more
than 30 years [leh69,85,feast]. This work has resulted
in a set of laws of software evolution
[leh74,78,80a,b,85,feast], the SPE program
classification scheme [leh80b], a principle of
software uncertainty [leh89,90] and, most recently, a
FEAST hypothesis [leh94feast]. The results of the
recent work within the FEAST projects are scattered
in some 40 papers published since 1996 [feast]. A
full listing is available from the project web site
http://www.doc.ic.ac.uk/~mml/feast.

2 Towards a Formal Theory of Software
Evolution

It is the view of the present authors that formalisms
can play as important a role in the study of the what
and the why of software evolution as they do in the
how view, even though they serve different purposes.
In the how mode, they are primarily intended to be
used as representations of different models of the
application; that is, specifications, programs, the
operational, evolution domains and even of entities
such as the evolution process, system architectures
and relationships such as abstraction and satisfaction
[mai00]. And all these models must permit continual
representation of the subject as it evolves. The power
of appropriate formalisms in this area is clear.

3 Behavioural Formalisms

One of the roles of formalisms under the what/why
view can be to facilitate precise reasoning about the
behaviour of the evolution process, and its product.
Managers and process designers could frequently
benefit from reasoned exploration of behavioural
issues but lack the reasoning tools to do so. Of equal
relevance is the potential role of formalisms in
guiding the direction and likelihood of future

changes in process, product or domain attributes or
the direction and likelihood of future changes in
needs.

Formalisms to facilitate such reasoning have
emerged, for example, from the work in process
modelling languages over the last 15 years or so
[ost87,97,pot97]. The emphasis of that work has
been primarily on process description and
prescription. Formalisms have also been applied by
the workflow community [e.g., wir00]. Combining
both concepts, models such as process programs
[ost87,97] indicate the steps that constitute a process,
workflow controls, conditions to activate sub-
processes and so on. Within this view, fine-grained
characteristics and properties such as absence of
deadlock, were also of interest.

The present authors believe that reasoning about
process behaviour and about properties such as the
economic feasibility of a process or about its quality
and other performance, however measured, is at least
as relevant as is reasoning about process description
and prescription.

The introduction of formalism to the study of
process behaviour raises many issues1. Some of these
have previously been analysed, for example, by those
investigating the use of mathematics in sociology
[col64]. This brings with it the question whether
process behaviour is predominantly indeterministic
(as defined by Chapman [cha96]) and therefore not,
since it involves humans at all levels, in general
amenable to mathematical formalisation. The same
question arises in the study of the software process. If
this view were to prevail, the use of formalisms to
study process behaviour would be a futile exercise.
Some software process behaviour has, however, been
captured in empirical generalisations (e.g. laws of
software evolution [leh74,78,80a,b,85,feast]) as has,
for example, software process effort estimation in
COCOMO [boe00] These are, by themselves,
sufficient to demonstrate that there is a role for
formalism in the study of process behaviour. Other
evidence also derived from empirical studies [e.g.
abd91,leh98] supports this conclusion; has
demonstrated that mathematical formalisms such as
differential equations for example, have their uses in
other such studies.

One of the outcomes of the FEAST projects has
been the realisation that one may extend the use of
formalisms to achieve rigorous representations of
behavioural invariants and empirical generalisations
such as the laws of software evolution, on the one
hand, and rules and guidelines [leh00a] for project
management, on the other [leh00c]. If this can be
successfully achieved one will be able to provide a

1 See [mcg97] for a justification of software process

behavioural formalisms from a different but complementary
perspective.

formal rationale for what is termed good practice.
Even more importantly, one will be able to provide a
formal theory of software evolution as the
foundations for a unified and coherent framework for
software engineering. The development of such a
theory is the theme of a recent project proposal
[leh00c,d].

4 Software Process Simulation Modelling

The argument in favour of behavioural formalisms
accords with a recent call for software engineering
research to abandon the flatland of purely technical
issues and to proceed to incorporate other dimensions
such as cost and value [boe00]. One possible way to
achieve this and to proceed to a disciplined study of
process behaviour is by means of simulation
languages and tools, and models derived therefrom.
One example of this approach is provided by the
work of the process simulation community
[kel99,prosim00]2. Another example is provided by
the FEAST projects with its models reflecting
aspects of long-term evolution management [feast].
That work involved development of system dynamics
models [for61,abd91,coy96]. The tool used was
Vensim® [ven95].

As briefly discussed in section 7, those models
provide an example of the use of formalisms, in this
case system dynamics, for the study software
evolution from the behavioural point of view. The
work is illustrated here by a model intended for use
in long-term planning and management of software
evolution processes. The outputs of this model all
relate to the evaluation of effort allocation policies.
However, alignment of the present model to actual
industrial processes, its calibration against them and
determination of its domain and extent of validity
[for80] remain to be done. If successfully
accomplished, the result will be a model that can be
used within the processes it reflects for their further
planning, management and improvement.

Incidentally, this application draws attention to an
issue considered in other disciplines and specifically
addressed by Heisenberg's Principle of Uncertainty.
Using a model of system evolution to plan
implementation of that evolution will influence
resultant process behaviour, is indeed intended to do
so. Thus, it may serve as a self-fulfilling prophecy,
confirming (and perpetuating) the validity of the
model, even though objectively it does not accurately
reflect the phenomenon. This observation appears to
point to a fundamental principle relating to the
evolution process. It cannot be pursued here other

2 Formalisms such as Petri-Nets [e.g. kus97] or state charts and
the STATEMATE® system [e.g. har90] have also been used in
process behavioural modelling. We do not here discuss under
what circumstances one formalism is more appropriate than
another in this application or whether a combination of
formalisms can offer an advantage [ram98].

than to observe that it is related to the observation
that software operating in and with a real-world
domain incorporates a model of itself [leh85].

In any event, what can be said is that the system
dynamic models referred above incorporate
behavioural formalisms of software evolution. Hence
they are relevant, and hopefully, of interest to FFSE.

5 An Example: Change and Complexity in
Evolving Software

Software evolution may be described as the
achievement of disciplined software change. It is
driven, inter alia , by the need to maintain user
satisfaction within a changing application and usage
domain. Changes are inevitably in the application
domain, user familiarity, needs and domain
properties. They result from user learning,
familiarisation and other developments within an
environment in which market forces, human interest
and ambition, technology, the influence of factors
and agents exogenous to the application and system
also play a role. Evolution entails adaptation of
existing properties, functionality in particular, and
the addition of new capability. The latter implies
system functional growth over time and releases. The
ultimate goal is to at least maintain and, generally, to
increase stakeholder satisfaction.

In the above context, one underlying fact of life
must be accepted. As a consequence of the
superposition of change upon change upon change,
the complexity of software systems tends to increase
as they evolve [leh74]. Such increase brings with it,
pressure for a decline in the attainable functional
growth rate [e.g. leh98]. Managers can either ignore
this decline and face the inevitable consequences of
eventual system stagnation. Alternatively they can
take cognisance of the complexity growth and divert
effort to control it and any other forces causing the
decline in growth rate. Given an awareness that
growth trends that constrain system evolution
develop, they may well accept the need to direct
effort to activities that might otherwise have been
overlooked or neglected. However, if the need is not
recognised or not accepted such anti-regressive
activities will tend to be neglected. This, despite the
fact that, unless controlled, as the system evolves,
growing complexity will force down system
maintenance, adaptation and extension productivity
and system quality will deteriorate. This is a fact that
cannot be permitted to materialise when control and
mastery of system evolution is vital in a society
increasingly reliant on inventories of ageing
software.

6 Complexity Control: Anti-regressive Work

Growing complexity is reflected by increased size,
more interdependent functionality, a larger number
of integrated components, more control mechanisms,

a higher level of reciprocal interdependency. It is
reflected in and evidenced by greater inter-element
connectivity and more complex (sic) interfaces. In
this context, the achievement of a minimum level of
complexity management and control activity is
essential to maintain the rate of system evolution at
the desired or required level.

Motivated by Baumol's classification [bau67] of
activity into progressive and anti-progressive types,
Lehman suggested [leh74] a further category, anti-
regressive. Activities that, by addition or
modification of functionality for example, enhance
system value were termed progressive. Effort such as
complexity control or reduction, on the other hand,
does not, from the short-term point of view,
contribute to the perceived value, as reflected, for
example, by system functional power or
performance. What it achieves is to prevent system
decline. If this trend is not controlled, the cost and
fault proneness of system evolution will grow; will
ultimately constrain system evolution and, in a
continually changing world, reduce its value or even
render it valueless. This class of activity was termed
anti-regressive. All effort that compensates for
ageing effects is included in this class. Such work
consumes effort without immediate visible
stakeholder return. What it achieves is to facilitate
continued evolution, more easily, more quickly, more
reliably and with less effort. It preserves the
opportunities for future growth in value.

7 A Model and its Use3

The system dynamics [for61,80,abd91,coy96,]
model presented here has been inspired by the laws
of software evolution [leh74,85,feast], fieldwork with
FEAST/2 collaborators and a study of how others
approached the development of models of the
software process.

Originally inspired in the context of mathematical
system theory, system dynamics (SD) [for61,coy96]
and tools such as Vensim® [ven95] that implement
and support it, was developed to study the behaviour
over time (dynamics) of industrial and managerial
systems. Its vocabulary, involving terms such as
levels (or stocks), and flow (or rate) variables, was
inspired by hydraulic systems that appeared to offer
intuitive appeal. Guidelines for reinterpretation in
other domains may be found in [e.g. for61,coy96].

SD's mathematical formalism is that of differential
equations. An SD model is essentially a set of non-
linear first-order differential equations:

dx(t)/dt = f(x(t),p)
where t represents the real-time variable, x(t) is a
vector of levels, p a vector of parameters and f() is a
non-linear vector-valued function. It is particularly
powerful for the representation and simulation of

3 For a more detailed description of the model see [kah00].

systems involving feedback loops and mechanisms
and in that context makes heavy use of numerical
methods for the integration of differential equations.
In the context of systems dynamics the latter are
derived from system visualisations as represented in
the system dynamics formalism.

At first sight the underlying formal mathematical
models would seem inappropriate in the software
engineering context. As illustrated by the example
that follows the results obtained so far in FEAST
[feast], provides a degree of evidence that the
approach is useful. It suggests that as a multi-loop,
multi-level, multi-agent feedback system [leh94], the
long term, global, behaviour of the global software
process is primarily determined by its feedback
nature, and by implied equations as defined by the
visualisations. The model, and language used to
represent it, constitute a formalism.

The semantics and syntax of system dynamic
models and the procedures to build and validate them
have been described in many references [e.g.
coy96,ven95]. Two different representations are
generally used: influence and level-rate diagrams.

The structure of the behavioural relationships
within a software evolution process can be sketched
using influence diagrams [coy96]. Influences
between any two attributes can be either balancing as
for negative feedback or reinforcing as for positive
feedback. An influence diagram presents the
attributes of interest (in pictures and/or text). Arrows
represent influences. A "+" character close to the
arrow indicates a positive influence, such as "...the
higher the variable at the arrow's origin, the higher
the attribute at the arrow's end...". A "-" character

indicates the opposite influence. This represents a
simple, but effective, view of expected relationships.

The influence diagram in figure 1 constitutes a
simplified view of the model to be discussed and the
influences it encompasses. In the figure, arrows with
solid shafts indicate relationships that are definitively
positive or negative. Arrows with dashed shafts
indicate influences that, under some circumstances
may be positive, under others, negative.

Fig. 2 is a level-rate diagram representing the full
model as developed using the Vensim® tool [ven95].

The variables in the boxes represent levels or
stocks. The variables on the valve icons represent
flows or rates. The variables in circles are auxiliary
variables. The remaining variables are model
parameters. Arrows with double lines represent flows
of information or material that are conserved
throughout the execution of the model. Clouds
represent either sources or sinks of information or
material. The Appendix presents the model of figure
2 in the Vensim® tool's language [ven65].

This relatively simple model represents the process
at a high-level of abstraction, enabling the global
nature and influences on the process [leh94] to be
more easily understood. It is intended to provide a
tool for use in the context of planning and
management of software evolution. It relates
specifically to demonstrating the influence of the
progressive to anti-regressive effort ratio on the long
term growth rate using the model as in figure 3 as an
executing process simulation. A detailed discussion
of the plots is not appropriate here, and the plots are
presented as results typical of what one would expect
when studying process dynamic behaviour.

Cumulative Anti
Regressive

Work

PREPARATION POLICY

INTEGRATION
POLICY

EFFORT
ALLOCATION

POLICY

SUBMISSION
POLICY

ACCEPTANCE
POLICY

Work in Progress

Preparation flow

Work Implemented

Team Size

IMPLEMENTATION
POLICY

Cumulative Progressive Work

RELEASE
POLICY

Productivity

Other Additions
and Changes

Identified

Changes to
Requirements

Work Accepted

Work Ready for
Implementation

Integration flow

Implementation flow

Work to be Released

Fielded Functionality
Satisfying Current Needs

Work Identified

+

-

+

+

+
+

+

+

+

+

+

+

Figure 1: Influence diagram of an ideal software evolution process

Anti regressive work

Submision Flow

Preparation
Flow

ACCEPTED
TARGET

SYSTEM TYPE
MULTIPLIER

Validation and Integration effortRELEASE
POLICY

Cumulative
Fielded

Functionality

Progressive effort

INTEGRATION
SUCCESS
FACTOR

Acceptance Flow

Work
Accepted

Anti regressive effort

Additions and
Changes Identified

by Others

Rejected as
needing
rework

PREPARATION
PRODUCTIVITY FACTOR

TEAM SIZE

Software
release

Demand obsolescense

Implemented

Requirement
Change flow

IN PROGRESS
TARGET

Work Prepared for
Implementation

Successfully
integrated

VALIDATION AND
INTEGRATION

EFFORT
MULTIPLIER

PREPARATION EFFORT
MULTIPLIER

Work Ready
to Release

Work Implemented

Cumulative Anti
Regressive Work

Fielded Functionality
Satisfying Current

Needs

NORMAL
PRODUCTIVITY

TIME STEP

Work Identified

F
PROGRESSIVE

FRACTION

<Time>

Productivity

Cumulative
Progressive

Work

Change plus defect
discovery factor

Preparation effort

INTEGRATION
PRODUCTIVITY

FACTOR

In Progress

Figure 2: Detailed view of the system dynamics model
(no meaning is here to be attached to arrow line thickness)

The plots in figure 3 represent the effects of three
different policies that address in particular the level
of effort assigned to anti regressive work. Resource
available is kept constant throughout. Three policies,
AR60, AR40, AR0, are compared. They correspond
to the application of 60, 40 and 0 percent of the
available effort to anti regressive work. This, in turn,
corresponds to 20, 30 and 50 percent, respectively, of
the effort available to progressive work as reflected
by the variable F Progressive Fraction. Remaining
resources are shared by the two other activities,
Preparation and Validation and Integration.
Simulation results (see fig. 3) show that AR40 leads
to higher Cumulative Fielded Functionality, than
either AR60 or AR0. The accompanying behaviour
of other model variables is also presented in the
plots. The model offers the basis for other policy
analyses relevant, in this instance, to release
planning [e.g. leh00a]. Moreover, the variables in
this model provide a set of attributes that are more
generally useful in monitoring and planning
evolution process performance.

This workshop, with its focus on formal
foundations of software evolution is not the
appropriate occasion to enlarge further on the model
or to discuss what else may be learned from it with
regards to the software process and its products. The
brief discussion presented and the principles

underlying its development are simply intended to
demonstrate the relevance and application of formal
methods in the wider sense. In this instance the
discussion has focussed on the study of the what/why
of software evolution and their potential as tools for
the planning and management of long-term evolution
processes. Another is provided by the proposal to
develop a formal theory of software evolution. The
middle ground between purely prescriptive
(normative) and behavioural process models remains
unexplored. Semi-normative theories [col64] may
prove to be a useful path to follow for further study
of this topic.

8 Final Remarks

This paper suggests that formalisms may not only
be relevant in the context of methods and tools to
evolve software, that is, the realm of the how to
achieve software evolution through software change,
but also within the investigation of the what and why
of the evolution process.

Our thesis has been that such formalisms, together
with models implemented using them, may help in
planning and management of long-term evolution.
The latter if undertaken, would aim at achieving the
above in a reliable, timely and cost-effective way. Its
achievement, of course, involves many unsolved
challenges. Continuing change and increasing system

complexity phenomena, the focus of the simulation
model presented, is, however, only one of many
influences determining behavioural attributes of
long-term software evolution processes and products.

More generally, simulation models developed
according to some rigorous discipline may be
considered as a formalisation of the software process
that provides means to analyse and reason about its
behaviour. Other formalisms may be useful for
reasoning about and justifying good practice. The
latter will, we believe, be derivable as theorems from

a theory of software evolution to be developed in a
project, currently awaiting funding decision
[leh00c,d]. That development will be seeded and
driven by the behavioural invariants and empirical
generalisations observed over the years in the
FEAST [feast] and similar studies.

9 Acknowledgements

Financial support from the UK EPSRC, grant
GR/M44101 (FEAST/2), is gratefully acknowledged.

Cumulative Fielded Functionality
4,000

3,000

2,000

1,000

0

0 20 40 60 80 100 120 140
Time (Month)

Cumulative Fielded Functionality - AR0

Cumulative Fielded Functionality - AR40

Cumulative Fielded Functionality - AR60

AR0

AR40

AR60

of Modules

of Modules

of Modules

Cumulative Anti Regressive (AR) Work
8,000

6,000

4,000

2,000

0

0 20 40 60 80 100 120 140
Time (Month)

Cumulative Work - AR0

Cumulative Work - AR40

Cumulative Work - AR60

AR0

AR40AR60

of Modules subjected to AR work

of Modules subjected to AR work

of Modules subjected to AR work

Figure 3a,b: Example of model simulation output4

Work Identified i.e. waiting to be addressed
2,000

1,500

1,000

500

0

0 20 40 60 80 100 120 140
Time (Month)

Work Identified - AR00 # of Modules Impacted equiv.

Work Identified - AR40 # of Modules Impacted equiv.

Work Identified - AR60 # of Modules Impacted equiv.

AR0 AR40

AR60

Productivity
4

3

2

1

0

0 20 40 60 80 100 120 140
Time (Month)

Productivity - AR00 Modules/Person Month
Productivity - AR40 Modules/Person Month

Productivity - AR60 Modules/Person Month

AR0 AR40AR60

Figure 3c,d: Examples of model simulation output

10 References - An * indicates that the reference has been
reprinted in [leh85]. ** indicates that is available from
links at http://www.doc.ic.ac.uk/~mml/feast

[abd91] Abdel-Hamid T and Madnick S, Software Project
Dynamics - An Integrated Approach, Prentice-Hall,
Englewood Cliffs, NJ.

[bau67] Baumol WJ, Macro-Economics of Unbalanced Growth
- The Anatomy of Urban Cities, Am. Econ. Review, Jun
1967, pp. 415 - 426

[boe00] Boehm BW and Sullivan KJ, Software Economics: A
Roadmap, in Finkelstein A (ed.), The Future of Softw. Eng.,
ICSE 22, pp. 321 - 343

[cha96] Chatfield C, The Analysis of Time Series - An
Introduction, 5th Ed., Chapman & Hall, London, 1996

 4 Module counts (e.g., # of files) exemplify one possible unit.

of Modules subjected to Anti regressive work may be too
simplistic. In a practical case, other units must be used.

[col64] Coleman JS, Introduction to Mathematical Sociology,
Collier-Macmillan Limited, London, 1964, 554 pp.

[coo00] Cook S et al, Software Evolution and Software
Evolvability, working paper, U. of Reading, Aug. 2000

[coy96] Coyle RG, System Dynamics Modelling - A Practical
Approach, Chapman & Hall London, 413 p

[feast] Feedback, Evolution And Software Technology, Project
Web Site http://www.doc.ic.ac.uk/~mml/feast

[for61] Forrester JW, Industrial Dynamics, Cambridge, Mass.:
MIT Press, 1961

[for80] Forrester JW and Senge P, Tests for Building
Confidence in System Dynamics Models, In System
Dynamics, Legasto AA Jr., Forrester JW and Lyneis JM
(eds.), TIMS Studies in the Management Sciences, v. 14.
North Holland, New York, 1980, pp. 209 - 228

[gdf00] Godfrey MW and Qiang T, Evolution in Open Source
Software: A Case Study, Proc. ICSM 2000, 11-14 Oct.
2000, San Jose, CA, pp. 131-142

[har90] Harel D et al, STATEMATE: A Working Environment
for the Development of Complex Reactive Systems, IEEE
Trans. on Softw. Eng., v. 16, n. 4, Apr. 1990, pp. 403 - 414

[kah00] Kahen G, Lehman MM and Ramil JF, System Dynamic
Modelling for the Management of Software Evolution
Processes, Research Report 2000/16, Dept. of Comp ., Imp.
Col., Nov. 2000

[kel99] Kellner MI, Madachy RJ and Raffo DM, Software
Process Simulation Modelling: Why? What? How?, J. of
Syst. and Software, v. 46, n. 2/3, April 1999, pp 91 - 106

[kem99] Kemerer C and Slaughter S, An Empirical Approach to
Studying Software Evolution', IEEE Trans. on Softw.
Engineering, v. 25, n. 4, July/Aug. 1999, pp. 493 - 509

[kus97] Kusumoto S et al, A New Software Project Simulator
Based on Generalized Stochastic Petri-net, Proc. ICSE 19,
Boston, May 17 - 23, 1997, pp. 293 - 302

[ispse98] ISPSE 98, International Workshop on the Principles of
Softw. Evolution, 20-21 April 1998, co-located with ICSE
98, Kyoto, Japan

[ispse00] ISPSE 2000, International Symposium on Principles
of Software Evolution, Kanazawa, Japan, Nov 1-2, 2000

[leh69]* Lehman MM, The Programming Process, IBM Res.
Rep. RC 2722, IBM Res. Centre, Yorktown Heights, NY
10594, Sept. 1969

[leh74]* id, Programs, Cities, Students, Limits to Growth?,
Inaugural Lecture, in Imp. Col. of Sc. and Techn. Inaug.
Lect. Seri., v. 9, 1970 - 74, pp. 211 - 229. Also in
Programming Methodology, Gries D. (ed.), Springer Verlag,
1978, pp. 42 – 62

[leh77]* id, Human Thought and Action as an Ingredient of
System Behaviour. In Duncan R & Weston Smith M (eds.),
Encyclopedia of Ignorance, Pergamon Press, Oxford, 1977

[leh78]* id, Laws of Program Evolution - Rules and Tools for
Program Management'. Proc. Infotech State of the Art
Conf., Why Software Projects Fail, - April 1978, 11/1-11/25

[leh80a]* id, On Understanding Laws, Evolution and
Conservation in the Large Program Life Cycle, J. of Sys.
and Softw., 1980, 1, (3), pp. 213-221

[leh80b]* id, Programs, Life Cycles and Laws of Software
Evolution, Proc. IEEE Spec. Iss. on Softw. Eng., 68, (9),
Sept. 1980, pp. 1060-1076

[leh85] Lehman MM & Belady LA, Software Evolution -
Principles of Software Change, Acad. Press, London, 1985

[leh89] Lehman MM, Uncertainty in Computer Application and
its Control Through the Engineering of Software, J. of
Softw. Maint.: Res. Pract., v. 1, n. 1, Sept. 1989, pp. 3-27

[leh90] Lehman MM, Uncertainty in Computer Application,
Tech. Let., CACM, v. 33, n. 5, May 1990, pp. 584-586

[leh94] Lehman MM, Feedback in the Software Process,
Keynote Address, CSR Eleventh Annual Wrksh. on Softw.
Ev. - Models and Metrics. Dublin, 7-9th Sep. 1994. Also in
Info. and Softw. Tech., spec. iss. on Softw. Maint., v. 38, n.
11, 1996, Elsevier, 1996, pp. 681 - 686

[leh98] Lehman MM, Perry DE and Ramil JF, On Evidence
Supporting the FEAST Hypothesis and the Laws of
Software Evolution, Proc. Metrics'98, Bethesda, Maryland,
20-21 Nov. 1998, pp. 84 - 88

[leh00a]** Lehman MM, Rules and Tools for Software
Evolution Planning and Management, pos. paper, FEAST
2000 Workshop, Imp. Col., 10 - 12 Jul. 2000,
http://www.doc.ic.ac.uk/~mml/f2000

[leh00b]** Lehman MM, Ramil JF and Kahen G, Evolution as a
Noun and Evolution as a Verb, SOCE 2000 Workshop on
Software and Organisation Co-evolution, Imp. Col.,
London, 12-13 Jul. 2000

[leh00c] Lehman MM and Ramil JF, Towards a Theory of
Software Evolution - And Its Practical Impact, invited talk,
ISPSE 2000, Intl. Symp . on the Principles of Softw.
Evolution, Kanazawa, Japan, Nov. 1-2, 2000

[leh00d] Lehman MM, TheSE - An Approach to a Theory of
Software Evolution, proj. prop., DoC, Imp. Col., Dec. 2000

[mai00] Maibaum TSE, Mathematical Foundations of Software
Engineering: a Roadmap, in A. Finkelstein (ed.), The Future
of Software Engineering , ICSE 2000, June 4-11 Limerick,
Ireland, pp. 161 - 172

[mcg97] McGrath GM, A Process Modelling Framework:
Capturing Key Aspects of Organisational Behaviour, Proc.
Australian Softw. Eng. Conf., 1997, pp. 118 - 126

[ost87] Osterweil L, Software Processes Are Software Too,
Proc. 9th Int. Conf. on SEng., 1987, pp 2 - 12

[ost97] Osterweil L, Software Processes Are Software Too,
Revisited: An Invited Talk on the Most Influential Paper of
ICSE 9, Proc. 19th Int. Conf. on Software Engineering, May
17-23, 1987, Boston, MA, pp. 540 - 548

[pod97] Podoroznhy RM and Osterweil LJ, The Criticality of
Modeling Formalisms in Software Design Method
Comparison - Experience Report, ICSE'97, May 17-23
1997, Boston MA, pp. 303-313

[prosim00] Prosim 2000, Workshop on Software Process
Simulation and Modelling, 12-14 July, 2000, Imp. Col.,
London, http://www.prosim.org

[raj00] Rajlich VT and Bennett KH, A Staged Model for the
Software Life Cycle, Computer, Jul.2000,pp.66-71

[ram98]** Ramil JF and Lehman MM, Fuzzy Dynamics in
Software Project Simulation and Support, Proc. 6th
European Workshop on Softw. Process Technology
(EWSPT-6), 16-18 Sept. 1998, Weybridge, UK, LNCS
1487, Springer-Verlag, pp. 122-126

[ven95] Vensim - Ventana Simulation Environment, Reference
Manual, Version 1.62, Belmont, MA., 1995

[wir00] Wirtz G, Using a Visual Software Engineering
Language for Specifying and Analysing Workflows, IEEE
International Symp.on Visual Languages 2000, pp. 97 - 98

Appendix - The Model in Vensim [ven95]
Acceptance Flow =
IF THEN ELSE((Work Accepted<ACCEPTED TARGET)
:AND:(Work Identified>0),300,0)
 ~
 ~ |
ACCEPTED TARGET = 100
 ~
 ~ |
Additions and Changes Identified by Others = (RANDOM
POISSON(60))
 ~ Changes/Month
 ~ |
Anti regressive effort =IF THEN ELSE (
(TEAM SIZE-Preparation effort
-Progressive effort-Validation and Integration effort)>0,
(TEAM SIZE-Preparation effort-Progressive effort
-Validation and Integration effort),0)

 ~
 ~ |
Anti regressive work= Anti regressive effort * Productivity
 ~
 ~ |
Change plus defect discovery factor = 1/120
 ~
 ~ |
Cumulative Anti Regressive Work =INTEG(Anti regressive
work,0)
 ~
 ~ |
Cumulative Fielded Functionality = INTEG(Software release,0)
 ~
 ~ |
Cumulative Progressive Work = INTEG(Implemented,0)
 ~
 ~ |
Demand obsolescense = Work Identified * 0.05
 ~ Changes/Month

 ~ |
F PROGRESSIVE FRACTION = 0.3
 ~
 ~ |
Fielded Functionality Satisfying Current Needs =
INTEG(Software release-Requirement Change flow,150)
 ~ [0,?]
 ~ |
Implemented =
IF THEN ELSE(In Progress > 0,
Progressive effort*Productivity,0)
 ~
 ~ |
In Progress = INTEG(Submision Flow-Implemented+Rejected
as needing rework,100)
 ~ [0,?]
 ~ |
IN PROGRESS TARGET =100
 ~
 ~ |
INTEGRATION PRODUCTIVITY FACTOR = 2
 ~
 ~ |
INTEGRATION SUCCESS FACTOR = 0.95
 ~
 ~ |
NORMAL PRODUCTIVITY = 2
 ~ Modules/Person Month
 ~ |
Preparation effort =Progressive effort *PREPARATION
EFFORT MULTIPLIER
 ~
 ~ |
PREPARATION EFFORT MULTIPLIER = 0.5
 ~
 ~ |
Preparation Flow = Productivity*Preparation effort*
PREPARATION PRODUCTIVITY FACTOR
 ~
 ~ |
PREPARATION PRODUCTIVITY FACTOR = 2
 ~
 ~ |
Productivity =NORMAL PRODUCTIVITY*
((TEAM SIZE^0.2) - ((1/1800) *TEAM SIZE^2)) *
(1-MAX(0,SYSTEM TYPE MULTIPLIER*
(Cumulative Progressive Work - Cumulative Anti Regressive
Work)))
 ~ Modules/Person Month
 ~ |
Progressive effort = F PROGRESSIVE FRACTION*
TEAM SIZE
 ~
 ~ |
Rejected as needing rework =
Productivity*Validation and Integration effort*
(1-INTEGRATION SUCCESS FACTOR)*
INTEGRATION PRODUCTIVITY FACTOR
 ~
 ~ |
RELEASE POLICY ([(0,0)-(100,10)],(0,0),
(11,0),(12,1),(14,1),(15,0),
(23,0),(24,1),(26,1),(27,0),
(35,0),(36,1),(38,1),(39,0),
(47,0),(48,1),(50,1),(51,0),
(59,0),(60,1),(62,1),(63,0),
(71,0),(72,1),(74,1),(75,0),
(83,0),(84,1),(86,1),(87,0),
(95,0),(96,1),(98,1),(99,0),
(107,0),(108,1),(110,1),(111,0),
(119,0),(120,1),(122,1),(123,0),
(131,0),(132,1),(134,1),(135,0),
(143,0),(144,1),(146,1),(147,0))
 ~
 ~ |
Requirement Change flow =Fielded Functionality Satisfying
Current Needs*

Change plus defect discovery factor
 ~ Changes/Month
 ~ |
Software release =MAX(0,(Work Ready to Release/TIME
STEP)*
LOOKUP EXTRAPOLATE(RELEASE POLICY, Time))
 ~
 ~ |
Submision Flow = IF THEN ELSE((In Progress<IN
PROGRESS TARGET)
:AND:(Work Prepared for Implementation > 0),300,0)
 ~
 ~ |
Successfully integrated = IF THEN ELSE
(Work Implemented > 0,
Validation and Integration effort*Productivity*
INTEGRATION SUCCESS FACTOR * INTEGRATION
PRODUCTIVITY FACTOR,0)
 ~
 ~ |
SYSTEM TYPE MULTIPLIER =0.0005
 ~
 ~ |
TEAM SIZE = 30
 ~
 ~ |
TIME STEP = 0.125
 ~
 ~ |
Validation and Integration effort = Progressive effort *
VALIDATION AND INTEGRATION EFFORT
MULTIPLIER
 ~
 ~ |
VALIDATION AND INTEGRATION EFFORT
MULTIPLIER = 0.5
 ~
 ~ |
Work Accepted = INTEG(Acceptance Flow-Preparation
Flow,100)
 ~
 ~ |
Work Identified= INTEG(Additions and Changes Identified by
Others +Requirement Change flow-Demand obsolescense-
Acceptance Flow,600)
 ~ Changes
 ~ |
Work Implemented = INTEG(Implemented-Successfully
integrated-Rejected as needing rework,200)
 ~ Changes
 ~ |
Work Prepared for Implementation = INTEG(Preparation Flow-
Submision Flow,100)
 ~
 ~ |
Work Ready to Release = INTEG(Successfully integrated-
Software release,0)
 ~ [0,?]
 ~ |

 .Control
**************************~
Simulation Control Paramaters
 |
FINAL TIME = 100
 ~ Month
 ~ The final time for the simulation.
 |
INITIAL TIME = 0
 ~ Month
 ~ The initial time for the simulation.
 |
SAVEPER = 1
 ~ Month
 ~ The frequency with which output is stored.
 |

